
REVIEW

Good statistical practice in pharmacology
Problem 1

M Lew

Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia

Background and purpose: This paper is intended to assist pharmacologists in making the most of statistical analysis and in
avoiding common errors that can lead to false conclusions.
Approach: A scenario is presented where a pathway inhibitor increased blood pressure responses to an agonist by about one
third. The fictional experimenter concludes that the inhibitor enhanced the responses to the agonist, but has not applied any
statistical analysis. Questions are asked of the reader, and a discussion of the author’s answers is presented.
Results: The agonist responses have unequal standard errors, as often seen in data like these concentration-response curves
with responses expressed as change from baseline. The uneven variability (heteroscedasticity) violates an assumption of
conventional parametric statistical analyses, but can be corrected by data transformation. Expressing the data as absolute
blood pressure and then transforming it to log blood pressure eliminated the heteroscedasticity, but made evident an effect of
the inhibitor on baseline blood pressure.
Conclusions and implications: Statistical analysis is a sensible precaution against mistakes, but cannot protect against all
erroneous conclusions. In this scenario, the inhibitor reduced the blood pressure and increased responses to the agonist.
However, it is likely that the latter effect was a consequence of the former and thus no conclusion can be safely drawn about
any direct interaction between the agonist and the pathway inhibitor from this experiment. Where results are awkward to
interpret because of confounding factors such as an altered baseline, statistical analysis may not be very useful in supporting a
safe conclusion.
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Problem

The following data were obtained from an experiment

intended to determine the effect of pretreatment with an

inhibitor of an intracellular signalling pathway (test) on the

blood pressure responses of anaesthetized rats to an a-

adrenoceptor agonist (agonist). Each rat was randomly

allocated to either control or treatment groups (n¼8 rats

in each group), and the bolus doses of the agonist were

applied in an ascending sequence after the effect of the

previous dose had worn off (Figure 1).

Without any statistical analysis, the experimenter con-

cluded that the pathway inhibitor enhanced the responses to

the agonist.

(1) Is the conclusion reasonable given the data? Should a

statistical test be applied to the data before deciding

whether the intervention was effective?

(2) Would any re-expression of the data be necessary before

analysis of the data?

(3) What conclusion do the data support?

Analysis of problem 1: A case of expressive
obscurity

1. Is the conclusion reasonable given the data? Should a statistical

test be applied to the data before deciding whether the intervention

was effective?

The conclusion looks quite solid, and you do not need

always to apply statistical analyses before making a conclu-

sion. However, effects have to be quite large before they can

be reliably identified by even an experienced experimenter –

particularly if the experimenter has an interest in the result!

Statistical analysis is a powerful tool for avoiding mistaken

conclusions, and given that the small cost involved for

analysis of most common experimental designs – just a little

thought and effort – there is scant justification for leaving

that tool in the toolbox.

Statistical analysis of the data shown in this problem

would indicate that the effect has only a very low probability

of being the result of chance alone, but the obvious

conclusion that follows – that the intervention enhanced

the responses to the agonist – is very misleading, as we will

soon see. Statistical analyses generally provide guidance

about the probabilities of very specific hypotheses, and it
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turns out that hypotheses regarding the responses as percent

of the baseline are not very interesting in this experiment.

The results of a statistical test are not the only thing to

consider when making scientific inferences.

2. Would any re-expression of the data be necessary before

analysis of the data?

Yes. There is an uneven distribution of the variability in

the data, with little variability in small responses and lots in

the large responses. (Note: the condition where variances are

unevenly distributed is often called ‘heteroscedasticity’, but

we should avoid words with more than seven syllables!) The

unevenness is not particularly pronounced and might

commonly be ignored, but doing so can lead to biases in

the results of ordinary least-squares regression and statistical

analyses like analysis of variance – the analytical approaches

most likely to be applied to this type of data – because those

analyses are based on the assumption (among others) of

equal distribution of variability across the data.

The particular pattern of heterogeneity of variance visible

in these data is quite common in pharmacological studies

and so we will explore it a bit further. Some of the

heterogeneity is a consequence of the way that the data

are expressed: expression of the measurements as percent of

the baseline inevitably results in the baseline values having

no variability. To fix that part of the problem, we only have

to return the data to the raw form of blood pressure.

However, for these data, the variation is still unevenly

distributed in that form because there is a strong positive

correlation between the means and their variation – a

common pattern of unevenness that occurs when measure-

ments are bounded at the low end, when data have a natural

tendency to scale exponentially, or whenever the underlying

population is right-skewed. Many variables commonly

measured in pharmacology have such properties. Concen-

trations are always bounded because they cannot be less

than zero, and it has been shown empirically that the

concentrations of many blood constituents have right-

skewed distributions (Flynn et al., 1974). The distribu-

tions of concentration–response curve EC50s (which are

concentrations) are right-skewed. Cultured cells grow ex-

ponentially, at least to a degree, and counted values are

theoretically distributed according to the right-skewed

Poisson distribution.

The log-normal distribution is a common example of a

right-skewed distribution, and so it is not surprising that a

logarithmic transformation of such data can even out the

distribution of variance where the variance is correlated with

the mean. Other transformations such as taking the square

root or reciprocal of the values will also fix the unevenness of

variance in some situations, but the log transform is a good

one to try first. For the present data, log transformation of

the blood pressure values almost eliminates the unevenness

of variance and completely eliminates the correlation

between mean and variance (Figure 2).

Statistical analysis of log-transformed data does require

that the hypotheses tested relate to the logarithmic values,

so one needs to be sure that the log transform does not make

the outcome difficult to interpret. Conveniently, in most

cases, a hypothesis relating to the magnitude of a property

is logically equivalent to a hypothesis relating to the

logarithm of the magnitude of the property, so that issue

usually does not matter in practice. It certainly is not an issue

in this experiment, so we will apply a log transform

(Figure 3).
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Figure 2 Variability of standard error of the mean (s.e.m.) with responses expressed as percentage of the baseline (left panel), blood pressure
(centre panel) and log blood pressure (right panel). The logarithmic transformation removes the tight correlation between the size of the
response and the variability in the response measurement.
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Figure 1 Blood pressure responses to an a-adrenoceptor agonist in
untreated rats (control) or in rats pretreated with an intracellular
pathway inhibitor (test). Each rat was randomly assigned to either
treatment or control (n¼8 per group) and the agonist doses were
applied in ascending sequence.
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It is important to note that while the log transform is

effective in eliminating the heterogeneity of variance in

these data, other patterns of uneven variation may not be so

easily identified and corrected (see Keppel and Wickens,

2004, section 7.4, for an extensive discussion of hetero-

geneity of variance). The best approach in those cases might

be to use statistical analyses that do not assume equal

variances in the first place. For comparison of two means,

one might use the Mann–Whitney U-test or Welch’s version

of the t-test that is modified specifically for unequal

variances, although it is arguable that an exact permutation

test would be the best approach (Ludbrook, 2000). For

comparisons between more than two means, the Kruskal–

Wallis analysis of variance on ranks might be used, or a more

powerful exact permutation procedure. Those tests will not

be dealt with any further here, because they would not be

the best approach for the data in the current problem.

However, the topic of non-parametric tests will be expanded

in another paper in this series.

3. What conclusion do the data support?

Based on the percent baseline data (Figure 1), one might

reasonably conclude that the intervention has increased the

responses to the agonist, but based on the raw blood pressure

data or the log blood pressure data (Figure 3), one would

probably conclude that the intervention has decreased the

baseline blood pressure and not substantially altered the

responses to the agonist. Which interpretation is correct?

Both y or perhaps neither.

It is possible that there was a failure of randomization in

the experiment, or an uneven randomization, such that the

rats in the control and test groups had different blood

pressures before treatment. In that case, there would be no

point in considering effects of the intervention any further.

However, let us assume that the baseline difference was an

effect of the intervention. Even so, if we define a response as

having units of percent of baseline, then there really was an

increase in the responses as a consequence of the treatment.

The change in baseline blood pressure does not negate the

conclusion that responses were enhanced, rather it provides

the likely mechanism for their enhancement. While such a

conclusion is sound, it is dangerous. The experimenter and

readers might easily be misled into thinking that there was a

direct interaction between the signalling pathway inhibited

and the effectiveness of the agonist. A convincing demon-

stration of such an interaction would require determination

of what the intervention did to the agonist responses

independently of any effect on baseline pressure. Using a

percent baseline scale for responses would be a particularly

poor choice because that scale is ‘fragile’, in that it can be

confounded by any change in the baseline.

The experimenter may not have expected the intervention

to change the baseline blood pressure – in fact, it would be

uncharitable to suggest that anyone would choose to express

the data as percent of baseline if an alteration in the baseline

was expected – but the results suggest quite strongly that it

did: analysis of the baseline blood pressures values with

Student’s t-test gives P¼0.003. However, it has to be noted

that test was unplanned and consequently carries an inflated

risk of a false-positive outcome. Unplanned comparisons are

selectively applied to test for (unexpected) differences that

are apparent in the data. Some of the time the unexpected

differences will be random rather than real treatment effects,

but if they are apparent to the eye then they are likely to be

‘declared’ significant by statistical analysis.

It is impossible to accurately correct for that inflation of

the false-positive outcome rate without making an assump-

tion about the (unknown) true effect rate, but consideration

of the scientific rationale for an effect can help. If it is

difficult to explain how the intervention could have

decreased blood pressure, then we might suspect that the

statistical outcome is a type I error. On the other hand, if it is

easy to explain how the intervention could have lowered

blood pressure, then we might be justified in accepting that

it really did so. Unlikely results need to be supported by

strong evidence; predictable results need less.

We do not know how likely the blood pressure lowering

effect of inhibiting the particular pathway was, but P¼0.003

is low enough to absorb quite a strong correction for being

unplanned without becoming unconvincing. Nonetheless, it

is important that the results of an unplanned comparison be

treated differently from the results of a planned comparison,

at least by being identified as such in any publication.

Ideally, the result should be confirmed with a new experi-

ment before publication. Some statisticians go so far as

recommending that the new experiment be conducted by a

different laboratory. Good and Hardin (2003) suggest that
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Figure 3 Data from Figure 1 re-expressed as raw blood pressure (left) and as log blood pressure (right). Note that these illustrations of the
data allow the baseline blood pressure to be displayed. Compare the patterns of effect with that in Figure 1.
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‘no reputable scientist would ever report results before

successfully reproducing the experimental findings twice,

once in the original laboratory and once in that of a

colleague.’ They probably had in mind a more profound

result than what we are discussing here, but there is a sharp

contrast between their caution and the more cavalier

approach to ‘significance’ used by most of us.

So where are we? We have a substantial effect of the

pathway inhibitor on the percent baseline blood pressure

responses to the agonist but no effect on the raw blood

pressure responses, and we have a large unpredicted effect of

the intervention on the baseline blood pressure. We are not

really in a position to draw any clear conclusion about the

biology, and even the most thorough statistical analysis of

the available data will not really change our situation.

Looked at in that way, the experiment is not much more

than a preliminary study suggesting a new hypothesis that

the intervention lowers blood pressure. Whether the experi-

menter should continue with the original hypothesis that

the intervention alters the effectiveness of the agonist would

depend mostly on what rationale there was for that

hypothesis in the first place. The experiments would need

to be altered and expanded substantially to provide convin-

cing evidence of an effect of the intervention on the agonist

responses that is independent of the blood pressure lowering

effect. A range of doses of the signalling pathway inhibitor

should be investigated and controls for the effect of altered

baseline blood pressure would need to be devised.

Conclusions and recommendations

(1) Uneven distribution of variance is commonly encoun-

tered in pharmacological data and is generally associated

with skewed data distributions. Those conditions violate

assumptions built into conventional parametric statis-

tical analyses. When the means and the variances are

correlated, you should consider using a logarithmic

transformation of the data to reduce or eliminate

the problem.

(2) The choice of how to express the data is very important

and should not be made solely on the basis of habit

or convention. Always inspect the data in its raw

form before any normalization that can alter the

nature as well as the extent of apparent effects, and

think about how normalization might obscure or

exacerbate any confounding effects of uncontrolled

influences.

(3) Statistical analysis is a powerful tool for supporting

decisions about the meaning of experimental results.

However, where results are awkward to interpret because

of confounding factors, statistical analysis is rarely very

helpful. We have to be prepared to treat each set of

experiments as preliminary and use the results as a guide

to forming specific hypotheses and to designing better

experiments.
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